
SIRENZA MICRODEVICES Product Description

Sirenza Microdevices' SGC-6386Z is a high performance SiGe HBT MMIC amplifier utilizing a Darlington configuration with an active bias network. The active bias network provides stable current over temperature and process Beta variations. Designed to run directly from a 5V supply, the SGC-6386Z does not require a drop resistor as compared to typical Darlington amplifiers. The SGC-6386Z product is designed for high linearity 5V gain block applications that require small size and minimal external components. It is internally matched to 50 ohms.

The matte tin finish on Sirenza's lead-free "Z" package is applied using a post annealing process to mitigate tin whisker formation and is RoHS compliant per EU Directive 2002/95. The package body is manufactured with green molding compounds that contain no antimony trioxide or halogenated fire retardants.

Typical performance with appropriate application circuit

Preliminary Information

SGC-6386Z

RoHS Compliant & Green Package

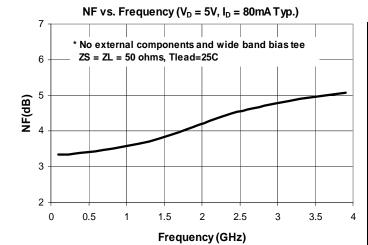
50-4000 MHz Silicon Germanium Cascadable Gain Block

Product Features

- Single Fixed 5V Supply
- Supply Drop Resistor not required
- Patented Self Bias Circuitry
- P1dB = 18.3 dBm at 1950 MHz
- IP3 = 34.3 dBm at 1950 MHz
- Robust 1000V ESD, Class 1C HBM

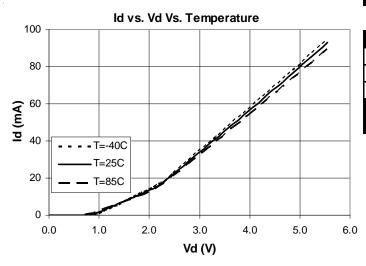
Applications

- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS
- IF Amplifier
- Wireless Data, Satellite


Symbol	Parameters	Units	Frequency	Min.	Тур.	Max.
			850 MHz		16.3	
G	Small Signal Gain	dB	1950 MHz		11.9	
P_{1dB}	Output Power at 1dB Compression	dBm	850 MHz		19.3	
		ubiii	1950 MHz		18.3	
OIP ₃	Output Third Order Intercept Point	dBm	850 MHz		35.6	
		ubiii	1950 MHz		34.3	
IRL	Input Return Loss	dB	1950 MHz		18.0	
ORL	Output Return Loss	dB	1950 MHz		17.0	
NF	Noise Figure	dB	1930 MHz		4.2	
V _D	Device Operating Voltage	V			5.0	
I _D	Device Operating Current	mA			80	
Rth, j-l	Thermal Resistance (junction to lead)	°C/W			106	
Test Conditio	ns: $V_D = 5.0V$ $I_D = 80mA$ Typ.	OIP ₃ Tone Sp	bacing = 1MHz	T _L = 2	5°C	
$Z_S = Z_L = 50 \text{ Ohms}$ Pout per tone = 0 dBm						

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2005 Sirenza Microdevices, Inc.. All worldwide rights reserved.

303 S. Technology Ct. Broomfield, CO 80021


			Unit	Frequency (MHz)					
Symbol	Parameter	100 - 1000MHz App. Circuit			1000 - 2200MHz App. Circuit				
				100	500	850	1000	1950	2200
G	Small Signal Gain		dB	17.5	17.3	16.2	15.1	11.9	11.1
OIP ₃	Output Third Order Intercept Point		dBm	35.8	36.2	35.6	34.9	34.3	33.6
P_{1dB}	Output Power at 1dB Compression		dBm	19.4	19.7	19.3	18.9	18.3	18.0
IRL	Input Return Loss		dB	10.0	35.0	21.0	12.0	18.0	16.0
ORL	Output Return Loss		dB	12.0	20.0	22.0	15.0	17.0	15.0
S ₁₂	Reverse Isolation		dB	21.0	21.0	21.0	21.0	19.0	18.0
NF	Noise Figure		dB	3.1	3.3	3.4	3.5	4.2	4.3

Absolute Maximum Ratings				
Parameter	Absolute Limit			
Max Device Current (I _{CE})	120 mA			
Max Device Voltage (V _{CE})	6.5 V			
Max. RF Input Power* (See Note)	+18 dBm			
Max. Junction Temp. (T_J)	+150°C			
Operating Temp. Range (T_L)	-40°C to +85°C			
Max. Storage Temp.	+150°C			
* Note: Load condition, $Z_L = 50$ Ohms				

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias Conditions should also satisfy the following expression: $I_DV_D < (T_J - T_L) / R_{TH}$, j-l $T_L=T_{LEAD}$

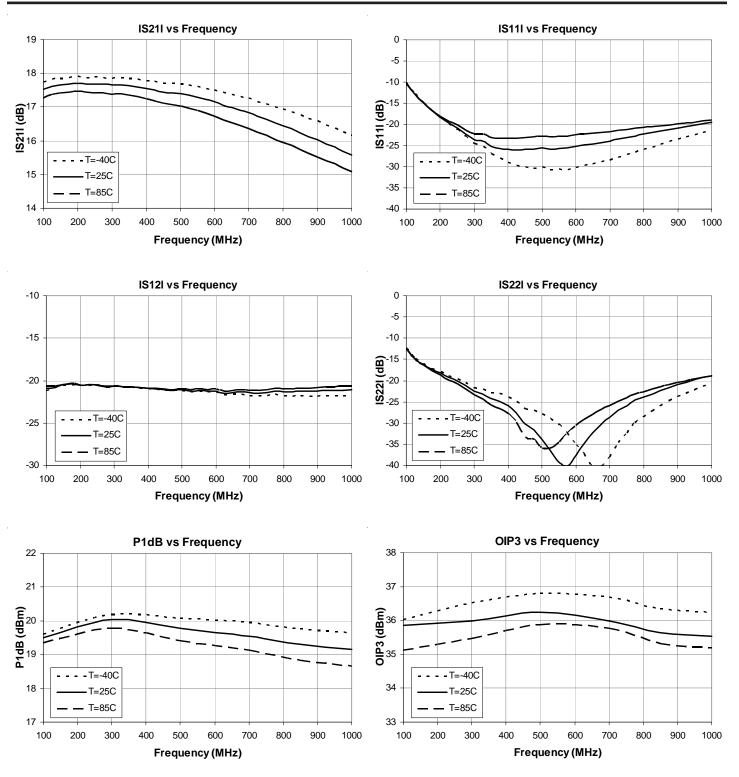
 Reliability & Qualification Information

 Parameter
 Rating

 ESD Rating - Human Body Model (HBM)
 Class 1C

 Moisture Sensitivity Level
 MSL 1

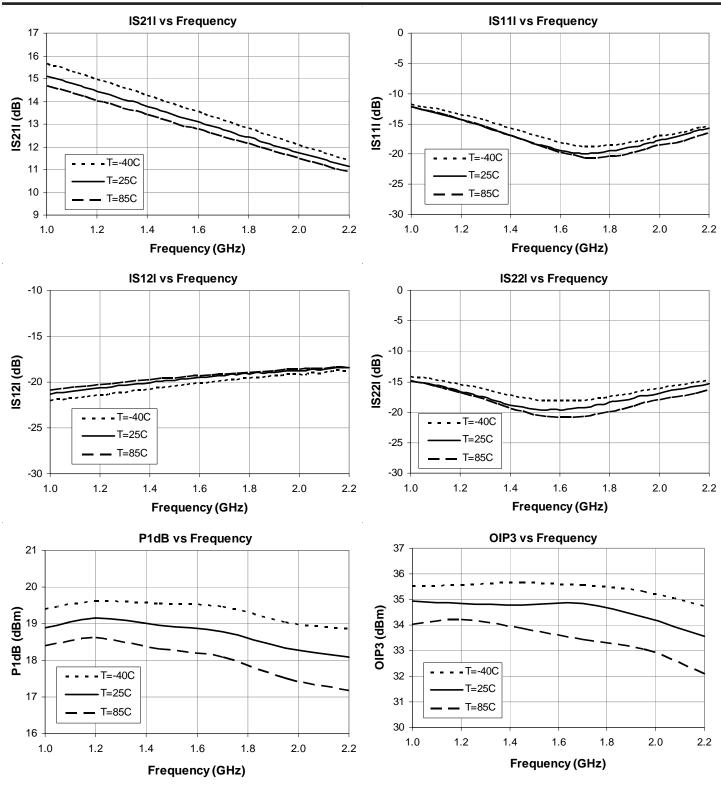
 This product qualification report can be downloaded at
 www.sirenza.com


Caution: ESD sensitive Appropriate precautions in handling, packaging and testing devices must be observed.

303 S. Technology Ct. Broomfield, CO 80021 http://www.sirenza.com EDS-104746 Rev A

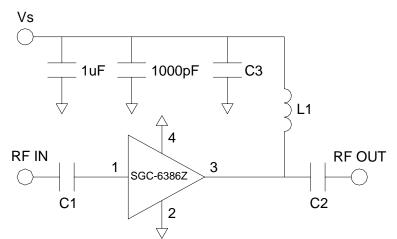
Typical RF Performance, 100-1000 MHz Application Circuit

(Bias: $V_{D} = 5.0 \text{ V}$, $I_{D} = 80 \text{ mA} (Typ.)$)


303 S. Technology Ct. Broomfield, CO 80021

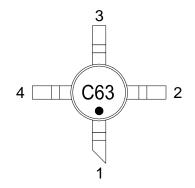
Preliminary Information

SGC-6386Z 0.05-4.0 GHz Cascadeable MMIC Amplifier


Typical RF Performance, 1000-2200 MHz Application Circuit

(Bias: V_{D} = 5.0 V, I_{D} = 80 mA (Typ.))

303 S. Technology Ct. Broomfield, CO 80021



Application Circuit Element Values					
Reference Designator	100-1000MHz	1000-2200MHz			
C1	1000pF	6.8pF			
C2	100pF	6.8pF			
C3	100pF	6.8pF			
L1	100nH	39nH			

Mounting Instructions

- 1. Use a large ground pad area under device pins 2 and 4 with many plated through-holes as shown.
- 2. We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick FR-4 board with 1 ounce copper on both sides.

Part Identification Marking & Pinout

Part Package / Number Lead Composition		Reel Size	Devices / Reel	
SGC-6386Z	Lead Free, RoHS Compliant	13"	3000	

Function

RF IN

GND

RF OUT /

DCBIAS

operation.

Pin #

1

2,4

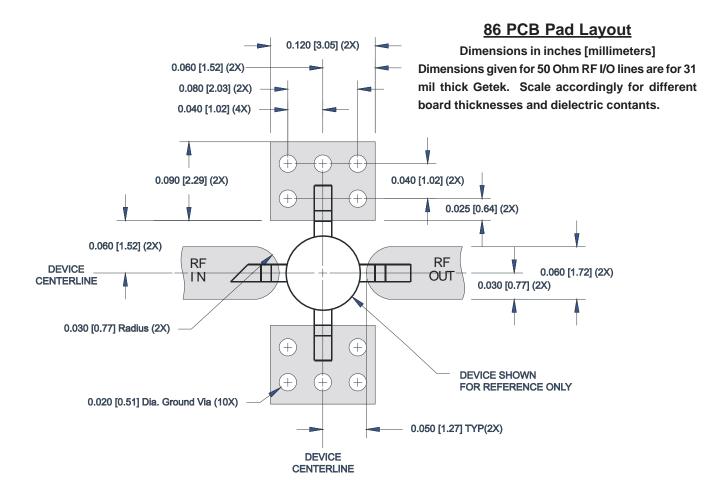
3

1uf 1000pF 000 000 C3 000 0 ОΠ 11 口 C1 È C2 0 0 ΠUΤ ΤN 000 000 000 ECB-101537 Rev A 86 Eval Board

> Description RF input pin. This pin requires the use of an external DC

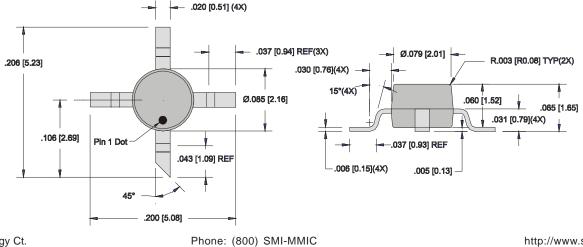
blocking capacitor chosen for the frequency of operation Connection to ground. Use via holes as close to the device

ground leads as possible to reduce ground inductance and


external DC blocking capacitor chosen for the frequency of

RF output and bias pin. This pin requires the use of an

achieve optimum RF performance


Broomfield, CO 80021

86 Nominal Package Dimensions

Dimensions in inches [millimeters] A link to the 86 package outline drawing with full dimensions and tolerances may be found on the product web page at www.sirenza.com.

